Solution without a Dataset

import time

system = "Classify the text below as pro-Brexit or anti-Brexit. The answer

should be 'pro' or 'anti' depending on the stance.\n"

fewshot = """Below are a number of examples that show how this
classification task works.

Text: Brexit is bad. Immigrants make Britain great. They also cooked your
food The London restaurant causing a stir with anti-#Brexit messages on
your bill

Answer: 'anti'

Text: Britain's exit is a huge blow to the dream of a united Europe No. It
is the end of an anti-national, centralized, globalist, neoliberal and
authoritarian system and organism like the EU and its hegemonic power over
Europe.

L}

Answer: 'pro

mmon

#fewshot = ""

pipe = pipeline(
"text-generation",
model=model,
tokenizer=tokenizer,
pad token id=tokenizer.eos token id,
return full text=False,

max new_tokens=1, # We only need to generate 'pro' or 'anti'.

n_instances = 100

n _correct = 0

t0 = time.time ()

for i, label, text in test data.itertuples():

prompt = f"<s>[INST] {system}\n{fewshot}\nText:\n{text}\n[/INST]

\nAnswer: '



pipe output = pipe (prompt) [0] ['generated text']
print (i, label, pipe output, text)

if pipe output == label:

n _correct += 1

if i == n_instances-1:
break

tl = time.time ()

print (f'{n correct}/{n instances} = {n correct/n instances:.4f}, time =
{t1-t0:.2f}")

Solution with a Dataset

fewshot = """Below are a number of examples that show how this
classification task works.

Text: Brexit is bad. Immigrants make Britain great. They also cooked your
food The London restaurant causing a stir with anti-#Brexit messages on
your bill

Answer: 'anti'

Text: Britain's exit is a huge blow to the dream of a united Europe No. It
is the end of an anti-national, centralized, globalist, neoliberal and
authoritarian system and organism like the EU and its hegemonic power over
Europe.

Answer: 'pro'

mmon

n_instances = 100

import datasets
from tgdm import tgdm

from transformers.pipelines.pt utils import KeyDataset

instance prompts = {'text': [f"<s>[INST]
{system}\n{fewshot}\nText:\n{text}\n[/INST] \nAnswer: '" for text in
test data.text[:n instances]]}

test dataset = datasets.Dataset.from dict(instance prompts)



pipe = pipeline(
"text-generation",
model=model,
tokenizer=tokenizer,
return full text=False,
pad token id=tokenizer.eos token id,
do_sample=False,
max new_ tokens=1,

batch size=8, # This is useful to make things a bit faster.
pipe.tokenizer.pad token id = model.config.eos token id
pipe output = pipe (KeyDataset (test dataset, 'text'))
n correct = 0
t0 = time.time ()
for res, label in tgdm(zip(pipe output, test data.label)):
if res[0]['generated text'] == label:
n correct +=1

tl = time.time ()

print (£'\n{n correct}/{n instances} = {n correct/n instances:.4f}, time =
{tl1-t0:.2f}")



